Determination of oxygen gradients in engineered tissue using a fluorescent sensor.
نویسندگان
چکیده
Nutrient and oxygen supply of cells are crucial to tissue engineering in general. If a sufficient supply cannot be maintained, the development of the tissue will slow down or even fail completely. Previous studies on oxygen supply have focused on measurement of oxygen partial pressures (pO(2)) in culture media or described the use of invasive techniques with spatially limited resolution. The experimental setup described here allows for continuous, noninvasive, high-resolution pO(2) measurements over the cross-section of cultivated tissues. Applying a recently developed technique for time-resolved pO(2) sensing using optical sensor foils, containing luminescent O(2)-sensitive indicator dyes, we were able to monitor and analyze gradients in the oxygen supply in a tissue over a 3-week culture period. Cylindrical tissue samples were immobilized on top of the sensors. By measuring the luminescence decay time, two-dimensional pO(2) distributions across the tissue section in contact with the foil surface were determined. We applied this technique to cartilage explants and to tissue-engineered cartilage. For both tissue types, changes were detected in monotonously decreasing gradients of pO(2) from the surface with high pO(2) to minimum pO(2) values in the center of the samples. Nearly anoxic conditions were observed in tissue constructs ( approximately 0 Torr) but not in excised cartilage discs ( approximately 20 Torr) after 1 day. Furthermore, the oxygen supply seemed to strongly depend on cell density and cell function. Additionally, histological analysis revealed a maximum depth of approximately 1.3 mm of regular cartilage development in constructs grown under the applied culture conditions. Correlating analytical and histological analysis with the oxygen distributions, we found that pO(2) values below 11 Torr might impair proper tissue development in the center. The results illustrate that the method developed is an ideal one to precisely assess the oxygen demand of cartilage cultures.
منابع مشابه
Genetically Engineered Mesenchymal Stem Cells Stably Expressing Green Fluorescent Protein
Objective(s) Mesenchymal stem cells (MSCs) are nonhematopoietic stromal cells that are capable of differentiating into and contribute to the regeneration of mesenchymal tissues. Human mesenchymal stem cells (hMSCs) are ideal targets in cell transplantation and tissue engineering. Enhanced green fluorescent protein (EGFP) has been an important reporter gene for gene therapy. The aim of this stu...
متن کاملA 3D engineered tumour for spatial snap-shot analysis of cell metabolism and phenotype in hypoxic gradients
The profound metabolic reprogramming that occurs in cancer cells has been investigated primarily in two-dimensional cell cultures, which fail to recapitulate spatial aspects of cell-to-cell interactions as well as tissue gradients present in three-dimensional tumours. Here, we describe an engineered model to assemble three-dimensional tumours by rolling a scaffold-tumour composite strip. By unr...
متن کاملA Dual colorimetric and Fluorometric Anion Sensor Based on Polymerizable 1, 8-Naphthalimide Dye
A new polymerizable fluorescent sensor based on the photoinduced electron transfer PET for the selective determination of fluoride ions in DMF solutions has been synthesized. The sensing system was prepared by incorporating 4-Amino-1,8-naphthalimide derivatives containing thiourea side chain at the amino moiety AFTN as a neutral F- selective flourophore and was characterized by use of the DSC, ...
متن کاملOxygen Gradients in Cartilage Explants and Cartilagineous Constructs: Modelled and Measured
Introduction Articular cartilage lacks the ability to sufficiently repair itself. Tissue engineering approaches may initiate functional repair and, therefore, are considered for the treatment of articular cartilage defects. Our method adopts a porous PEGT/PBT scaffold (PolyActive, IsoTis N.V.) with similar mechanical properties to native cartilage, which acts as a 3 dimensional carrier for seed...
متن کاملDesign of a Fluorescent Sensor Based on the Polydopamine Nanoparticles for Detection of Gallic Acid
Background: Gallic acid (GA) is one of the polyphenolic compounds with antioxidant, antimicrobial and radical scavenging activities, which plays a main role in human health against cancer and cardiovascular diseases. GA concentration can be quantitatively measured in food, medicinal plants and body fluids. Materials and Methods: In this study, MnO2 nanosheets were prepared by reducing potassium...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biotechnology and bioengineering
دوره 80 1 شماره
صفحات -
تاریخ انتشار 2002